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a b s t r a c t

The FT-Raman quantification of diclofenac sodium in tablets and capsules was performed with the help
of the partial least squares (PLS), principal component regression (PCR) and counter-propagation arti-
ficial neural networks (CP-ANN) methods. For the analysed tablets, calibration models were built using
unnormalised spectra and spectra normalised by the intensity of a selected band of an internal standard.
Different pre-processing methods were applied for the capsules. To compare the predictive ability of the
models, the relative standard errors of prediction (RSEP) were calculated. The 5 × 5 CP-ANN and PLS meth-
ods gave models of comparable quality, which were usually more efficient than the PCR ones. The RSEP
error values for the tablets were in the range of 2.4–3.8% for the calibration and 2.6–3.5% for the valida-
iclofenac sodium
eural networks
hemometrics

tion data sets and for the three procedures applied. For capsules, the RSEP errors were in the range of
0.8–1.9% and 1.4–1.7% for the calibration and validation samples, respectively. Five commercial products
containing 25, 50 or 75 mg of diclofenac sodium per tablet/capsule were quantified. Concentrations found
from the Raman data analysis agree with the results of the reference analysis and correlate strongly with
the declared values with the recovery of 99.5–101.3%, 99.7–102.0% and 99.9–101.2% for the PLS, PCR and
CP-ANN methods, respectively. The proposed procedure can be a fast and convenient alternative to the
standard pharmacopoeial methods of diclofenac sodium quantification in solid dosage forms.
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. Introduction

Diclofenac sodium, a sodium salt of 2-[(2,6-
ichlorophenyl)aminophenyl]-acetic acid and a potent analgesic
nd anti-inflammatory agent, is commonly used in various drug
ormulations including tablets, capsules, drops, injections, suppos-
tories, gels and ointments [1]. Several analytical methods for the
uantification of this active pharmaceutical ingredient (API) have
een developed. UV–vis spectroscopy [2–8], spectrofluorometry
9–11], liquid chromatography [12–20] and potentiometry [21–24]
re the most well-known techniques. An application of Raman
pectroscopy for the quantitative analysis of its injection solutions
as also demonstrated [25].

A continuous increase of Raman spectroscopy applications as

n analytical method for the quantification of complex mixtures,
ncluding pharmaceutical preparations, has been observed [26–29].
he technique, supported by chemometrics, enables the analysis of
edicines often without any additional sample treatment, which

∗ Corresponding author. Tel.: +48 71 3757 238; fax: +48 71 3757 420.
E-mail address: rsz@wchuwr.pl (R. Szostak).
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an remarkably simplify and shorten the analysis. It is a particu-
arly useful tool in the analysis of products with a high API content
30–36]. Nevertheless, Raman quantification of preparations with
–5% API weights has been reported [25,37,38]. This is likely
ecause aromatics APIs are usually much stronger Raman scat-
erers than excipients, which are typically aliphatic. In favourable
ases it is even possible to perform a reliable quantitative analysis
f an API content below a 0.1% (w/w) level with this method [39].
oreover, Raman technique enables also quantification of pharma-

eutical preparations when two or more solid-state forms of the
onstituents are present [40,41].

In the modelling of systems for which non-linear signal-answer
ependencies are present, the advantage of neural networks over
ther chemometrics methods, such as partial least squares (PLS)
nd principal component regression (PCR), is well-known, and the
umber of their applications for spectral data analysis continues to
row systematically [42–48]. Nevertheless, networking techniques
re mainly used as classification tools [49–52] and the application

f this method for quantification problems is not very common
42,48].

Herein, we present the results of FT-Raman diclofenac sodium
uantification in five commercial tablets and capsules obtained
sing the PLS, PCR and CP-ANN methods.

http://www.sciencedirect.com/science/journal/07317085
mailto:rsz@wchuwr.pl
dx.doi.org/10.1016/j.jpba.2008.08.013
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. Experimental

.1. Materials and sample preparation

The substances used, namely diclofenac sodium (Sigma–
ldrich), lactose (Pharma Cosmetic), microcystalline cellulose

Sigma–Aldrich), starch (POCH), magnesium stearate (Sigma–
ldrich), talc (Hasco-Lek), eudragit (Röhm Pharma), SiO2 (POCH)
nd potassium ferrocyanide(II) trihydrate (POCH) were of pharma-
opoeial purity [1,53] or of analytical grade. Four diclofenac sodium
reparations in the form of tablets (A, B, C, D) or capsules (E),
eclared to contain 25–75 mg of API, were purchased in a local
harmacy.

Calibration and validation samples with the suitable weight
atios of compounds, randomly varied, were prepared by mixing
ure, solid substances in a mortar for a few minutes to homogenise
he powders. Approximately 200 mg of powder was used to pre-
are a pellet in a way similar to that adopted in IR spectroscopy.
he commercial products were first ground and then processed fur-
her like the calibration samples. Only the content of the capsules
as analysed. Additionally, in the case of the analysis of the tablets,

n appropriate amount of K4[Fe(CN6)]·3H2O, chosen as an internal
tandard, was added to each sample. New pellets were prepared as
escribed above and Raman spectra were recorded again.

To check for the possible collinearity between the component’s
oncentrations, concentration versus concentration graphs were
lotted for the studied mixtures. No significant correlations were
bserved. The determination coefficients R2 for these plots were in
he 0.01–0.20 range.

.2. Apparatus

A Nicolet Magna 860 FT-IR spectrometer interfaced with an FT-
aman accessory, with a CaF2 beamsplitter and indium–gallium
rsenide (InGaAs) detector, was used to carry out the measure-
ents. The samples were placed in a rotating sample holder and

lluminated by an Nd:YVO4 laser line at 1.064 �m with a power of
50 mW at the sample without a converging lens; backscattered
adiation was collected. Samples were rotated at a constant speed
f approximately 200 rpm. The interferograms were averaged over
56 scans, Happ-Genzel apodised and Fourier transformed using a
ero filling factor of 2 to give spectra in the 100–3700 cm−1 range
t a resolution of 8 cm−1 for tablets and of 4 cm−1 for capsules.

UV–vis spectra were recorded using a Carry-5 Varian spectrom-
ter.

.3. Reference UV–vis analysis

Reference UV–vis analysis was performed according to a proce-
ure described by Fabre et al. [2] and de Micalizzi et al. [5]. Six
amples containing appropriate amounts of API mixed with the
ablet mass were dissolved in a methanol–water mixture (1:1, v/v)
iving solutions containing from 6.51 to 25.42 mg/L of diclofenac
odium. Using the first derivative of the UV–vis spectrum, a cali-
ration curve (slope = 0.0260, intercept = 0.5453, R2 = 0.9985) was
onstructed by the zero crossing technique (� = 258 nm).

.4. Computational methods

A sophisticated treatment of spectroscopic data is possible with

number of multivariate techniques. Undoubtedly the most com-
on among them is the principal component analysis (PCA), which

onstitutes the first step of PCR and PLS analyses. However in the
odelling of systems for which non-linear signal-answer depen-

encies are present, ANN seems to give better results. The FT-Raman

a
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c
t
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uantification of diclofenac sodium was performed using PLS, PCR
nd CP-ANN methods.

.5. Principal components regression

The principal components regression method generates the cal-
bration model in two steps [54–57]. In the first one of these, the
ariables in the independent data matrix X, such as the Raman spec-
ra of samples placed in columns, are transformed into new ones
hat are linear combinations of the original by principal compo-
ent analysis. New variables are obtained in such a way that the
ariance they explain decreases from the first to the last, and that
hey are orthogonal. There are several ways of finding the princi-
al components. A widely used technique for this is singular value
ecomposition (SVD). After PCA, the X data matrix is decomposed
s follows:

= SVDT , (1)

here the product of the S and V matrices is the T matrix of the
rincipal components (factors or loadings), and D is the matrix of
he coefficients (scores). In a second step, multiple regression is
pplied to the new variables and the measured Y property, which in
his analysis is the components’ concentrations, to obtain a matrix
f regression coefficients B, according to:

= XB + E, (2)

here E represents the error not accounted for by the model.

.6. Partial least squares regression

The PLS method, developed by Wold [58], is the most commonly
pplied mathematical tool in the quantitative analysis of multivari-
te data. The method is used to establish a relationship between
set of dependent (response) variables, Y, and a set of predic-

or (independent) variables, X [54–62]. The procedure performs a
rincipal component analysis on the independent variables matrix,
hile simultaneously maximising the correlation with the depen-
ent variables matrix. The matrices X and Y are decomposed in the
ollowing way:

= TPT + EX (3)

nd

= UQ T + EY , (4)

here T and U are loadings, and P and Q are score matrices.

.7. Counter-propagation artificial neural networks (CP-ANN)

The architecture of a CP-ANN allows one to combine an unsu-
ervised mapping technique, known as Kohonen mapping, with
supervised learning strategy [63–66]. The general concept of

he CP-ANN used is shown in Fig. 1. A network is built up from
wo layers of neurons arranged in two-dimensional rectangular

atrices, Nx × Ny, where x and y are numbers of neurons in the x-
nd y-directions. The input (Kohonen) layer is supplied with input
ariables related to the considered objects, which, in our case is
he number of diclofenac sodium mixtures. During the learning
rocess, the target values (concentrations of the mixture ingredi-
nts) are given to the output layer, which has the same topological

rrangement of neurons as the Kohonen layer. The algorithm selects
he neuron with the weights closest to the input variables. The cho-
en vector is called the winning, excited or central neuron. Once the
orrection of the weights has been performed in the Kohonen layer,
he position of the winning neuron is transferred from the input to
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of the chemometrics models on basis of unnormalised spectra:
750.9–789.5, 1109.9–1209.2, 1270.0–1392.7, 1550.6–1635.4 and
2809.6–3092.9 cm−1. They do not include fragments of spectra with
the lactose intense peaks, because lactose is not present in the B or
D preparations. The listed regions were slightly modified for each
ig. 1. General scheme of counter-propagation artificial neural networks (CP-ANNs)
63].

he output layer and the weights in the output layer are corrected
ccording to the given target value. Step by step, by introducing
ne object after another, the weights in the Kohonen and output
ayers are corrected in such a way that they become more similar
o the input variables. After the weights are stabilised, the CP-ANN is
rained. However, the performance of the CP-ANN does not depend
n the initiation of the weights, which is randomised.

In the prediction phase, the concentration values are picked up
rom the output layer. Following this stage, a new sample with an
nknown compound concentration is presented to the system. It is
rst situated in the Kohonen layer, after which the position of the
inning neuron is projected into the output layer and the result,

uch as concentration in our case, is extracted. The settings of the
etwork parameters were adjusted to find optimal conditions for
odelling purposes. For each system studied a test of network con-

itions, called screening, has to be carried out to find the lowest
rediction error value for the validation data set.

.8. Software and numerical data treatment

Nicolet TQ Analyst ver. 7 chemometrics software was used to
onstruct the PLS and PCR models. CP-ANN computations were per-
ormed with the help of software developed by Zupan et al. from
he Laboratory of Chemometrics, National Institute of Chemistry,
jubljana (Slovenia) [64]. Numerical data were transformed into an
ppropriate format using the Matlab environment.

All spectral data were mean-centred. The quantitative compo-
ition of the studied samples was expressed as a mass fraction for
odels based on unnormalised spectra, or as a weight ratio for
odels constructed using spectra normalised by the maximum

ntensity or the integrated intensity of the �s(CN) potassium fer-
ocyanide band.

To characterise and compare the predictive abilities of the devel-
ped models, the relative standard errors of prediction, RSEP, were
alculated according to the equation [67]:

SEP (%) =

√√√√∑n
i=1(Ci − CA

i
)
2∑n

i=1(CA
i

)
2

× 100, (5)
n which CA is the actual component content, C is the concentration
ound from Raman data analysis, and n is the number of samples.
irect comparison of various models based on data expressed in dif-

erent concentration units, in our case the mass fraction and weight
and Biomedical Analysis 48 (2008) 814–821

atio, using the root mean square (RMS) error can sometimes be a
umbersome task. However, there is a simple relationship between
he RSEP and RMS errors:

SEP (%) =
√

n∑n
i−1(CA

i
)
2

RMS × 100. (6)

It is much more convenient to calculate RSEP errors, which are
ndependent of the concentration units. In this text, we define the
SEPcal parameter as the RSEP error for the calibration data set and
SEPval for the validation one.

The predicted residual error sum of squares (PRESS) was calcu-
ated to select an optimal number of factors for the PLS models.
he cross-validation technique (leave-one-out) was performed to
stimate the robustness of the constructed models.

. Results and discussion

In Fig. 2, the FT-Raman spectra of pure diclofenac sodium and of
he studied commercial preparations are presented. All four anal-
sed tablets, denoted A, B, C and D, contain the active component
17.0–23.2% by weight) in addition to starch, cellulose, magnesium
tearate and silica in different proportions as excipients. Tablets

and C, and tablets B and D were produced by two different
anufacturers. The composition of the tablet mass of preparations

riginating from the same manufacturer was similar.

.1. Model construction and testing

To construct calibration models FT-Raman spectra of 29 solid
amples, prepared as described above, were used. The mass fraction
aried in the 0.08–0.34 range for diclofenac sodium, 0.09–0.42 for
actose, 0.09–0.33 for starch, 0.11–0.36 for cellulose and 0.04–0.16
or magnesium stearate. Six mixtures were chosen for the vali-
ation procedure and the validation data set was selected by the
ohonen mapping. The remaining 23 samples were used as a train-

ng set. This division between training and validation samples was
reserved for all of the chemometrics models built (PLS, PCR and
P-ANN) including the internal standard approach.

The following spectral ranges were applied in the construction
Fig. 2. FT-Raman spectra of diclofenac sodium and its analysed preparations.
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Fig. 3. PRESS values calculated for diclofenac sod

reparation studied. From the PRESS plot for diclofenac sodium,
resented in Fig. 3, it follows that it is enough to build the PLS
odel with the use of 3 factors.
The declared content of diclofenac sodium in preparation E

mounts to 75 mg per capsule, which is 34.5% by weight. As the
dditives are different from those present in the studied tablets
t was necessary to prepare a new calibration set; 35 mixtures
ontaining the active substance, cellulose, eudragit, SiO2 and talc
ere prepared in a way similar to that described above. The mass

raction varied in the range of 0.25–0.38, 0.25–0.37, 0.02–0.09,
.24–0.35 and 0.02–0.05 for these constituents, respectively. The
raining set composed of 27 mixtures and a validation set includ-
ng 8 samples were selected. Calibration models were constructed
sing the following spectral ranges: 699.1–939.2, 1060.7–1350.6,
398.0–1460.9, 1552.9–1621.9 and 2802.2–3475.8 cm−1. From the
RESS plot for diclofenac sodium (Fig. 3), one can see that 4 factors
an be used for the PLS model construction.

.1.1. CP-ANN modelling
Quantitative analysis using neural networking was also per-

ormed, and the results were correlated with those obtained from
he PLS and PCR analyses. As one could expect, the selection
f the spectral regions substantially influences the properties of
he obtained models and the quality of the quantification of the
nknown samples. In comparison to the PLS and PCR methods,
he optimisation of neural networking seems to be more complex,
ecause the number of possible network parameters influencing

he strength of the model is usually larger.

The settings of the CP-ANN parameters were adjusted to find
he optimal conditions for modelling by treating the set of n cal-
bration samples, represented by Raman intensities at m selected
avenumbers, m ≈ 700, as inputs. In our case n is equal to 23 or

s
w
a
p
n

ig. 4. Results of the screening procedure for tablets A: RSEP (%) errors for the calibration
- and y-directions and the number of learning cycles.
odelling in tablets (left) and in capsules (right).

7 for tablets or capsules, respectively. The predictive ability of the
odels depends noticeably on the network size, the number of neu-

ons in the x- and y-directions (Nx × Ny) and the number of learning
pochs, which expresses the intensity of the network learning. Dur-
ng the screening procedure, the Nx (=Ny) values in the range of
–7, namely the 9-, 16-, 25-, 36- and 49-neuron networks, were
ested. The prediction ability of the network in the range of 25–500
earning epochs was screened, and, for some cases, we extended
he number of cycles to 1000. The networks were trained using
tandard values of the maximal and the minimal correction factors
ettings, i.e. 0.5 and 0.01.

Fig. 4 shows the results of the screening procedure for the mod-
lling of tablet A. The improvement of the RSEPcal parameter values
ith the elongation of the learning process is observed. The errors

f prediction for the calibration set after 100 cycles are less than 2%
n the case of Nx = 6 and 7 networks, while for the smallest CP-ANN
Nx = 3) their values are 4 times higher. Additionally, for smaller net-
orks, the error values display periodical changes that are clearly

isible for Nx = 3, 4 and 5 in the top map.
The plot of RSEP error values for the validation samples (Fig. 4) is

ore complex in comparison with the analogous plot for the train-
ng set. An initial decrease of the error values with the elongation
f learning epochs is observed. Next, the minimum is reached. A
urther increase in the number of epochs does not result in improv-
ng the quality of the prediction, and errors often become higher.
he lowest RSEPval errors are found for Nx = 5 network. The pres-
nce of a wide minimum, near the 2.6% level, is noteworthy for this

ystem between 90 and 200 epochs. The screening of larger net-
orks, Nx = 6–7, suggests that a large separation of neurons, which

re occupied by calibrating samples in the top map, results in a
oorer classification of validating samples. For example, the 7 × 7
etwork has more than 60% of all neurons empty. It seems that the

(left) and validation (right) data sets as a function of the number of neurons in the
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F
(

Fig. 5. Calibration curves and relative errors for the diclofenac sodium content obta

ig. 6. CP-ANN networking for capsules E: the top map of the predicted diclofenac sodium
%) for the training data set (right); O—empty neurons.
ined using the PLS, PCR and CP-ANN models based on unnormalised spectra.

concentrations (left), in mass fraction units, and the top map of relative accuracy
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Table 1
Calibration parameters for diclofenac sodium determination in tablets A

Method Normalisation R RSEPcal (%) RSEPval (%) Rcv

PLS None 0.997 2.44 2.80 0.987
Imax

a 0.996 3.05 4.85 0.985
Iintegr

b 0.997 2.81 3.95 0.979

PCR None 0.994 3.77 3.54 0.985
Imax 0.993 4.06 4.38 0.991
Iintegr 0.993 3.97 4.28 0.991

CP-ANN None 0.998 2.45 2.60 0.980
Imax 0.995 3.32 3.78 0.982
Iintegr 0.994 3.64 3.49 0.987

Spectra normalised by the intensity at maximum (a) and integral intensity (b) of the
internal standard band.

Table 2
Calibration parameters for diclofenac sodium determination in capsules

Model PLS PCR CP-ANN

Parameter UN MSC SNV MVN

R 0.995 0.993 0.993 0.995 0.976 0.996
R
R
R

5
F
o
i
a

3

t
m
t
m
f
a

c
c
c
f
a
f
d

T
a
e
t
a
t
n
d
a
p
e

3

3

w
a
y
t
i

t
p
i
s
c
a
n

s
e
t
T
c
T

3

d
t
o

T
R

M

P

P

C

U

SEPcal (%) 0.96 1.02 1.01 0.92 1.89 0.83
SEPval (%) 1.40 1.34 1.64 1.08 1.75 1.57
cv 0.947 0.949 0.920 0.943 0.942 0.944

× 5 network is optimal for the tablets and capsules studied herein.
or all the analysed tablets, the minimal value of the RSEPval was
bserved between 100 and 200 learning cycles. In the case of stud-
ed capsules the lowest value of RSEPval error was already attained
t 75 epochs.

.1.2. Quality of the models
Typical calibration curves and plots of relative errors for the

hree chemometrics models applied are shown in Fig. 5. The top
ap of the predicted active compound concentrations as well as

he top map of the relative errors of calibration for the CP-ANN
odelling of preparation E, is presented in Fig. 6. The RSEP values

ound for the calibration and validation samples using the PLS, PCR
nd CP-ANN methods are quoted in Tables 1 and 2.

It is apparent from these data that the quality of models
onstructed on the basis of the PLS and CP-ANN methods are
omparable, and that they both manage to effectively model the

oncentration-dependent changes in spectral data. The RSEP error
or diclofenac sodium determination in tablet A is 2.4% for the PLS
nd CP-ANN models for the calibration data set. The error found
rom the PCR analysis is higher, at 3.8%. In the case of the analysed
iclofenac sodium capsules, the difference is even more evident.

b
t
o
p
p

able 3
esults (in milligrams) of FT-Raman analysis of the studied preparations (n = 6)

ethod Normalisation Preparation (declared content)

Tablet A (25 mg) Tablet B (25 mg)

LS None 25.12 ± 0.21 24.95 ± 0.29
Imax 25.05 ± 0.33 25.34 ± 0.49
Iintegr 24.80 ± 0.44 25.29 ± 0.42

CR None 24.99 ± 0.17 25.51 ± 0.31
Imax 25.13 ± 0.61 25.03 ± 0.51
Iintegr 24.86 ± 0.53 24.96 ± 0.41

P-ANN None 25.27a (100)b 25.28a (150)
Imax 25.16 ± 0.22 (150) 25.08 ± 0.11a (200)
Iintegr 25.54 ± 0.68 (100) 24.89 ± 0.11a (200)

V–vis 25.00 ± 0.32 25.10 ± 0.28

a All quantified samples assigned to the same neuron, the standard deviation value is e
b In parenthesis the number of learning epochs used for the CP-ANN training is quoted
and Biomedical Analysis 48 (2008) 814–821 819

he reported errors are 0.8%, 1.0% and 1.9% for the CP-ANN, PLS
nd PCR techniques, respectively. The external validation of mod-
ls gives the RSEPval errors in the ranges of 2.6–3.5% for the analysed
ablets and 1.4–1.8% for the capsules. However, when analysing the
dditives present in the studied preparations (data not listed in
ables), the RSEP errors change to 2.1% for lactose and 5.4% for mag-
esium stearate in the diclofenac sodium tablets. In spite of the
ifferences in the predictive ability, all three chemometrics models
re characterised by a comparable resistance to the leave-one-out
rocedure. The cross-validation correlation coefficient value, Rcv,
xceeds 0.94 for capsules and 0.98 for tablets.

.2. Commercial samples

.2.1. Quantification based on unnormalised spectra
On the basis of the constructed models studied pharmaceuticals

ere quantified. The mean contents of diclofenac sodium in the
nalysed commercial preparations determined by FT-Raman anal-
sis are shown in Table 3. The presented values confirm that the
hree computational approaches applied are comparably efficient
n the API quantification.

The quality of predictions of the neural networks depends on
he classification criteria and the final results depend on the appro-
riate assignment of the quantified samples to particular neurons

n the top map. Therefore, one can obtain reliable predictions for
tudied samples when the training set contains mixtures whose
omposition reflects as close as possible the composition of the
nalysed ones. This can be achieved for example by increasing the
umber of samples in the training set.

Quantification of the analysed preparations gave diclofenac
odium content, calculated against declared values, with the recov-
ry in the ranges of 99.5–101.3%, 99.7–102.0% and 99.9–101.2% for
he PLS, PCR and CP-ANN methods, respectively, as shown in Fig. 7.
he mean concentrations of API found from the Raman spectra
losely agree with the results of the reference analysis quoted in
able 3.

.2.2. Quantification based on normalised spectra
The quality of substance quantification by Raman spectroscopy

epends on the knowledge of the studied system composition. If
he composition of the calibration mixtures closely reflects that
f the analysed samples, one could expect more reliable results,

ut in pharmaceuticals it is sometimes difficult to identify all of
he ingredients present, especially if they constitute only a part
f a percent of a studied sample mass. Analysis based on a sim-
lified model, which does not take into account some constituents
resent in the studied system, usually results in an increase of quan-

Tablet C (50 mg) Tablet D (50 mg) Capsule E (75 mg)

50.63 ± 0.34 50.11 ± 0.64 74.62 ± 0.92
50.26 ± 0.44 49.99 ± 0.41
50.29 ± 0.84 50.07 ± 0.48

49.91 ± 0.38 50.77 ± 0.37 74.74 ± 0.67
50.64 ± 0.84 49.52 ± 0.73
50.23 ± 0.83 50.06 ± 0.44

50.61a (150) 49.94a (100) 75.28a (75)
50.61 ± 0.05a (150) 50.24 ± 0.53 (125)
49.47 ± 0.53 (150) 49.66 ± 0.52 (150)

49.11 ± 0.74 50.04 ± 1.15 75.61 ± 0.62

qual zero.
.
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mount for the studied pharmaceuticals and different analytical models.

ification errors [25,32,35]. Additional factors that can decrease
he quality of quantification are connected with the incident laser
eam instability and geometry changes of the incident and scat-
ered beam during the measurements. In such cases, an internal
tandard method could give more reliable results. This is especially
mportant if elaborated models were used over many weeks in a
uality control setting. In light of this, potassium ferrocyanide was
dded as an internal standard to the mixtures modelling tablets,
nd Raman spectra were recorded again. New PLS, PCR and CP-ANN
odels were built using the spectra normalised by the intensity at

he maximum and the integrated intensity of the 2091 cm−1 fer-
ocyanide line. The optimisation of spectral regions and modelling
arameters was also performed again.

The results, collected in Table 1, show the influence of normalis-
ng the spectra on the quality of predictions, especially on the level
f the RSEPval values. Errors found for the validation samples are
lose to 4% when the two types of normalisation were used. On
he other hand, no significant differences were observed in the Rcv

alues in comparison with the cross-validation results for models
ased on unnormalised spectra.

Applying the calibration models mentioned above, the studied
harmaceuticals with added potassium ferrocyanide were quanti-
ed again. The mean content of diclofenac sodium found is quoted

n Table 3. One can notice slightly higher standard deviation values
or the determined API concentrations in comparison with those
btained on the basis of unnormalised spectra, possibly due to a
elatively low S/N ratio for the analysed spectra [68]. The recovery
as 99.2–101.4% for PLS, 99.0–101.3% for PCR and 98.9–101.5% for
P-ANN methods, based on normalised spectra (Fig. 7).

In addition to internal and external standard methods, there are
lso other possibilities for improving the quality of analysis. The
ost well-known are the standard normal variate (SNV) normal-

sation of spectra [69] and multiplicative signal correction (MSC)
70]. These methods were used during the capsule’s analysis. Regis-
ered spectra were SNV-normalised or MSC-corrected and new PLS

odels were constructed. We also decided to apply another trans-
ormation of the spectra, i.e. their normalisation by mean intensity,
alculated over the entire spectrum (MVN). This simple pretreat-
ent procedure reduced quantification errors more efficiently than

he SNV and MSC methods in the course of the hydrocarbon mixture
ultivariate analysis based on multiplicatively distorted FT-Raman
pectral data [71].
The results presented in Table 2 indicate that only the MVN

ransformation of the spectra resulted in an improvement of the
LS model parameters, whereas the MSC procedure did not effect
hese parameters. The SNV normalised values are even worse than

[
[
[
[
[

and Biomedical Analysis 48 (2008) 814–821

hose obtained for the model based on untreated spectra. The quan-
ification of diclofenac sodium in preparation E using these models
ave 74.97 ± 0.88, 74.85 ± 0.66 and 74.72 ± 1.24 mg of API per cap-
ule for the MVN, MSC and SNV methods, respectively, which were
lightly better for the first two pretreatment procedures than the
eference model based on the original spectra.

. Conclusions

Five commercial preparations of diclofenac sodium, four in the
orm of tablets and one in capsular form, containing 25, 50 or 75 mg
f API were successfully quantified using the PLS, PCR and CP-ANN
odels based on FT-Raman spectra. Concentrations found from the

aman data analysis agree favourably with the results of the refer-
nce analyses. They also correlate strongly with the declared values
ith the recovery in the 99–102% range for the different models.

he proposed procedure could be a fast and convenient alternative
o the standard pharmacopoeial procedures of diclofenac sodium
uantification in solid dosage forms.
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40] F. Laplant, A. De Paepe, in: S. Šašić (Ed.), Pharmaceutical Applications of Raman

Spectroscopy, J. Wiley & Sons, Hoboken, 2008, pp. 85–115.
41] B. De Spiegeleer, B. Baert, N. Diericx, D. Seghers, F. Verpoort, L. Van Vooren, C.

Burvenich, G. Slegers, J. Pharm. Biomed. Anal. 44 (2007) 254–257.
42] F. Despagne, D.L. Massart, Analyst 123 (1998) 157R–178R.
43] S. Agatonovic-Kustrin, I.G. Tucker, D. Schmierer, Pharm. Res. 16 (1999)

1477–1482.
44] Y. Ni, C. Liu, S. Kokot, Anal. Chim. Acta 419 (2000) 185–196.
45] H.C. Goicoechea, M.S. Collado, M.L. Satuf, A.C. Oliveri, Anal. Bioanal. Chem. 374

(2002) 460–465.
46] K. Kipouros, K. Kachrimanis, I. Nikolakakis, V. Tserki, S. Malamataris, J. Pharm.

Sci. 95 (2006) 2419–2431.
47] Y. Dou, N. Qu, B. Wang, Y.Z. Chi, Y.L. Ren, Eur. J. Pharm. Sci. 32 (2007) 193–199.

48] P. Chalus, S. Walter, M. Ulmschneider, Anal. Chim. Acta 591 (2007) 219–224.
49] H. Yang, I.R. Lewis, P.R. Griffiths, Spectrochim. Acta A 55 (1999) 2783–2791.
50] B.K. Lavine, C.E. Davidson, D.J. Westover, J. Chem. Inf. Comput. Sci. 44 (2004)

1056–1064.
51] K. Hennessy, M.G. Madden, J. Conroy, A.G. Ryder, Knowl.-Based Syst. 18 (2005)

217–224.

[
[
[
[
[
[

and Biomedical Analysis 48 (2008) 814–821 821

52] V.O. Santos, F.C.C. Oliveira, D.G. Lima, A.C. Petry, E. Garcia, P.A.Z. Suarez, J.C.
Rubim, Anal. Chim. Acta 547 (2005) 188–196.

53] The European Pharmacopoeia, sixth ed., Council of Europe, Strasbourg,
2007.

54] T. Næs, T. Isaksson, T. Fearn, T. Davies, Multivariate Calibration and Classifica-
tion, NIR Publications, Chichester, 2002.

55] H. Martens, T. Næs, Multivariate Calibration, Wiley, Chichester, 1989.
56] F. Estienne, D.L. Massart, Anal. Chim. Acta 450 (2001) 123–129.
57] PLS Toolbox Version 3.0, Eigenvector Research Inc., Manson, 2003.
58] S. Wold, M. Sjöström, L. Eriksson, Chemom. Intell. Lab. Syst. 58 (2001)

109–130.
59] M.P. Fuller, G.L. Ritter, C.S. Draper, Appl. Spectrosc. 42 (1988) 217–227.
60] F. Estienne, D.L. Massart, N. Zanier-Szydlowski, P. Marteau, Anal. Chim. Acta 424

(2000) 185–201.
61] J.B. Cooper, Chemom. Intel. Lab. Syst. 46 (1999) 231–247.
62] J. Gabrielsson, N. Lindberg, T. Lundstedt, J. Chemom. 16 (2002) 141–160.
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